Using RNA-seq Data to Detect Differentially Expressed Genes

نویسندگان

  • Douglas J. Lorenz
  • Ryan S. Gill
  • Ritendranath Mitra
  • Susmita Datta
چکیده

RNA-sequencing (RNA-seq) technology has become a major choice in detecting differentially expressed genes across different biological conditions. Although microarray technology is used for the same purpose, statistical methods available for identifying differential expression for microarray data are generally not readily applicable to the analysis of RNA-seq data, as RNA-seq data comprise discrete counts of reads mapped to particular genes. In this chapter, we review statistical methods uniquely developed for detecting differential expression among different populations of RNA-seq data as well as techniques designed originally for the analysis of microarray data that have been modified for the analysis of RNA-seq data. We include a very brief description of the normalization of RNA-seq data and then elaborate on parametric and nonparametric testing procedures, as well as empirical and fully Bayesian methods. We include a brief review of software available for the analysis of differential expression and summarize the results of a recent comprehensive simulation study comparing existing methods. 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Function of Predicted Proteins from RNA-Seq Data in Holstein and Cholistani Cattle Breeds

This study was performed to determine the digital expression profile of different genes expressed in Holstein and Cholistani breeds as well as to evaluate the performance of predicted proteins derived from differentially expressed genes between these two breeds using RNA-Seq data. For this purpose, the whole mRNA sequence for a blood sample of American Holstein and Pakistani Cholistani cattle p...

متن کامل

RNA-Seq Bayesian Network Exploration of Immune System in Bovine

Background: The stress is one of main factors effects on production system. Several factors (both genetic and environmental elements) regulate immune response to stress. Objectives: In order to determine the major immune system regulatory genes underlying stress responses, a learning Bayesian network approach for those regulatory genes was applied to RNA-...

متن کامل

Gene Expression Profile Analysis during Mouse Tooth Development

Introduction: Complex molecular pathways involve in development of different tissues such as teeth. Differential gene expression patterns during teeth development generates different tooth types. Teeth development results from interactions between oral epithelium and underlying ectomesenchyme cells with neural crest origin. Teeth development are regulated by different signaling networks. In thi...

متن کامل

A comparison of RNA-seq and exon arrays for whole genome transcription profiling of the L5 spinal nerve transection model of neuropathic pain in the rat

BACKGROUND The past decade has seen an abundance of transcriptional profiling studies of preclinical models of persistent pain, predominantly employing microarray technology. In this study we directly compare exon microarrays to RNA-seq and investigate the ability of both platforms to detect differentially expressed genes following nerve injury using the L5 spinal nerve transection model of neu...

متن کامل

Traditional versus 3′ RNA-seq in a non-model species

One limitation of the widely used RNA-seq method is that long transcripts are represented by more reads than shorter transcripts, resulting in a biased estimation of expression levels. The 3' RNA-seq method, which yields only one sequence per transcript, bypasses this limitation. Here, RNA was extracted from two samples, in which we expected to find differentially expressed genes. Each was proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017